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Introduction

Research for over 200 years has provided evidence of the 
benefits of vaccination. Edward Jenner provided the first scientific 
rationale for vaccination by demonstrating that individuals 
immunized with the cowpox virus were protected from the 
disease caused by the smallpox virus.1 Historically, vaccines 
have consisted of live attenuated pathogens, whole inactivated 
organisms, purified antigens, or polysaccharides linked to a 
carrier protein or inactivated toxin. However, non-living vaccines 
have generally proven ineffective at inducing cell-mediated 
immunity (CMI), and some live attenuated vaccines can cause 
disease symptoms in immunosuppressed individuals. In addition, 
many traditional inactivated vaccines may contain components 
that can cause undesirable side effects and tolerability concerns.2 
Therefore, the induction of an effective and protective immune 

response with minimal adverse reactions is crucial to new vaccine 
development.

An “immunosense” vaccine is an epitope-based vaccine 
consisting of peptides derived from immunogenic proteins 
restricted by MHC supermotifs based on the theory of antigen 
processing and presentation. Epitopes are the antigenic 
determinant sections of antigens that are recognized by the 
immune system, specifically by antibodies, B cells, and T cells. 
In fact, these epitopes (antigenic determinants) rather than the 
entire antigens are recognized by immune cells. These can be 
specifically recognized by antibodies or by the antigen receptors 
of lymphocytes.3 T-cell epitopes are presented on the surface 
of antigen-presenting cells (APCs), where they are bound to 
major histocompatibility complex (MHC) molecules. The T-cell 
epitopes presented by major histocompatibility complex class I 
(MHC I) molecules are CD8+ T-cell epitopes, which are typically 
peptides 8–11 amino acids in length. In contrast, MHC class II 
molecules present longer peptides (13–17 amino acids in length), 
which are considered major CD4+ T-cell epitopes.4

In humans, the MHC is also called the human leukocyte 
antigen (HLA). MHC class I molecules are encoded in humans by 
the HLA-A, -B, and -C genes, which present peptides from inside 
the cells. MHC class II molecules are encoded in humans by the 
HLA-DP, -DQ, and -DR genes, which present peptides from 
outside cells to T-lymphocytes. The HLA molecules recognize 
specific peptides that constitute the epitopes of pathogens. The 
molecular basis of the interactions between HLA molecules and 
antigenic peptides are anchor residues and consensus motifs.5 In 
recent years, HLA transgenic mice have been used experimentally 
since the MHC molecules in these mice are the same as those 
involved in the human immune system.6

However, the diversity of HLA types in the human population 
is a potential obstacle for the study of epitope-based vaccines. 
HLA molecules exhibit high polymorphism; hundreds of 
different alleles exist. However, it has been demonstrated that 
a significant degree of overlap exists among the peptide-binding 
specificities of different HLA supertypes and that three peptides 
specificities corresponding to HLA-A02, A03, and B07 cover 
~90% of the world’s population.7,8
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Vaccination is a proven strategy for protection from disease. 
An ideal vaccine would include antigens that elicit a safe and 
effective protective immune response. HLA-restricted epitope 
vaccines, which include T-lymphocyte epitopes restricted by 
HLA alleles, represent a new and promising immunization 
approach. In recent years, research in HLA-restricted epitope 
vaccines for the treatment of tumors and for the prevention 
of viral, bacterial, and parasite-induced infectious diseases 
have achieved substantial progress. Approaches for the 
improvement of the immunogenicity of epitope vaccines 
include (1) improving the accuracy of the methods used for 
the prediction of epitopes, (2) making use of additional HLA-
restricted CD8+ T-cell epitopes, (3) the inclusion of specific 
CD4+ T-cell epitopes, (4) adding B-cell epitopes to the vaccine 
construction, (5) finding more effective adjuvants and delivery 
systems, (6) using immunogenic carrier proteins, and (7) using 
multiple proteins as epitopes sources. In this manuscript, we 
review recent research into HLA-restricted epitope vaccines.
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The epitope-based approach offers some potential advantages 
over the more conventional whole-protein approaches. The 
focusing of the immune responses against highly conserved 
epitopes might be crucial for the prevention and treatment of 
infection with highly variable pathogens. Therefore, a protective 
“immunosense” vaccine would include antigenic epitopes that 
bind to the HLA supertype families that are present in a large 
proportion of the population, and would be able to elicit an 
effective and protective immune response.

Although research and development of HLA-restricted 
epitope vaccines to treat cancer and to prevent infectious diseases 
have made substantial progress, only one peptide-based renal cell 
cancer vaccine (IMA901,9,10 which was developed by immatics 
biotechnologies GmbH) is known to have entered a Phase III 
clinical trial (www.immatics.com). There are many weaknesses 
and challenges associated with epitope vaccines. Thus, we should 
employ other useful strategies, such as the following: improving 
the accuracy of the prediction methods for epitopes, using more 
HLA-restricted CD8+ T-cell epitopes, including specific CD4+ 
T-cell and B-cell epitopes, identifying more effective adjuvants 
and delivery systems, using immunogenic carrier proteins, and 
using multiple proteins as epitope sources.

Methods Used for Epitope Identification

The first step in the design of an HLA-restricted epitope 
vaccine is the identification of high-affinity HLA epitopes. 
The methods used to identify epitopes are divided into two 
approaches: experimental and predictive.

Experimental approaches
The mapping of antigenic peptide sequences from proteins 

of relevant pathogens recognized by T and B cells is important 
for vaccine development. Experimental approaches depend 
on biochemical and immunological experiments, such 
as phage display libraries, overlapping peptides, enzyme-
linked immunosorbent assay (ELISA), nuclear magnetic 
resonance (NMR), immunofluorescence, radioimmunoassay, 
immunoblotting, immunohistochemistry, and X-ray 
crystallography studies of the antibody/antigen structure.

The fusion phage display technology, which was first developed 
by Smith et al. in 1985,11 is a strong tool for the study of the 
B-cell epitopes of proteins. Linear epitopes and conformational 
epitopes can be obtained from the protein antigens through the 
use of a random peptide library. The candidate gene fragment 
is first cloned into the phage coat protein gene region, and the 
exogenous polypeptide is expressed and displayed on the phage 
surface and maintained in a specific conformation. Immune sera 
or specific antibodies are used to screen the phage library, and 
positive binding phages are selected for sequence analysis. The 
amino acid sequences of the peptides displayed on the phage 
that are bound by the specific antibodies are then determined 
by sequencing the corresponding coding region in the pathogen 
DNAs. Tens of millions of short peptides can be easily surveyed 
for tight binding to an antibody, receptor or other binding protein 
using an “epitope library.” In 1990, Scott et al. used a random 
phage peptide library to search for the localization of epitopes 

localization on antigens for the first time.12 Since that time, 
related studies have been performed worldwide. This technology 
is widely used for epitope identification, and has greatly promoted 
the development of epitope vaccines. Beghetto et al. screened 
a phage-display library of Toxoplasma gondii cDNA fragments 
with sera from infected individuals and identified a panel of 
recombinant phage clones carrying B-cell epitopes encoding the 
T. gondii antigens SAG1, GRA1, GRA3, GRA7, GRA8, MIC3, 
and MIC5.13

In contrast, the T-cell epitope identification depends on 
functional assays, regardless of whether a T-cell function is 
detected. The following functional assays can be performed: 
MHC peptide, multimers14 solid-phase MHC-peptide 
complexes,15 intracytoplasmic cytokine staining,16 ELISPOT 
(ELISA spot),17 cytokine secretion and cell surface capture18 
and lymphoproliferation19 Most of the assays reveal a functional 
T-cell response, such as the upregulation of activation markers, 
cytokine synthesis, proliferation, cytolytic, and helper function. 
Using different methods, immunodominant peptides have 
been identified on the proteins of various pathogens. However, 
because numerous peptide panels from antigenic proteins need to 
be screened, the research is time-consuming.

Predictive bioinformatics approaches
With the aid of software and databases, bioinformatics 

methods have become economical and effective tools for epitope 
prediction. The bioinformatics methods used for the prediction 
models can be divided into sequence-based methods and 
structure-based methods.

The sequence-based methods for T-cell epitope predictions 
are based on the linear amino acid sequence. The search for a 
motif with the combination of preferred amino acids at some 
of the peptide anchor binding positions is the most widely used 
method for the prediction of epitopes.20 SYFPEIYHI was the first 
online database that was widely searched using the motif search 
approach.21 This database comprises more than 7000 peptide 
sequences that are known to bind class I and class II molecules 
(http://www.syfpeithi.de/). EPIPREDICT and EPIMER are 
also motif-based tools that are used for the identification of 
MHC class II-binding epitopes from proteins and the prediction 
of HIV-related epitopes. In addition, many algorithms such 
as quantitative matrices (QM)-based techniques (EpiMatrix 
Meister,22 Virtual matrix [VM],23 and BIMAS24), and machine-
learning techniques (Artificial Neural Networks [ANNs],25–28 
Hidden Markov Models [HMM],29 and Support Vector Machine 
[SVM],30,31) have been developed over these years. However, a 
number of incorrectly identified false positives are predicted as 
non-binders through the comparison of the affinities predicted 
by the algorithm with that of the experimentally determined 
proteins.32 The major limitation of these methods is their inability 
to discriminate between T-cell epitopes and non-epitope MHC 
binders.

The structure-based methods do not solely rely on binding 
data and sequence information. Instead, these methods use 
structural information based on three-dimensional structures of 
the protein and computational methods developed in the field 
of structural biology for the prediction.20 Docking is a quick 
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and powerful technique for the investigation of intermolecular 
interactions. EpiDOCK is a structure-based server for the 
MHC-binding prediction of peptides using docking score-
based QMs (DSQMs).33 This method predicts the binding 
to 12 HLA-DR, six HLA-DQ and five HLA-DP proteins.33 
Threading algorithms, such as CEP, and DiscoTope, are used to 
discriminate the binding and non-binding peptides for particular 
MHC molecules without requiring previous data. In addition, 
DOT and PatchDock, among others, are based on the homology 
modeling method to predict epitopes.

A higher prediction accuracy can be achieved though the 
use of a combined approach such as nHLAPred (QM + ANN), 
CTLpred (QM + ANN + SVM), IEDB binding I (ANN + ARB 
+ SMM), and IEDB binding II (Consensus Method + ARB + 
SMM + Sturniolo).7 Bhasin et al. evaluated of the prediction of 
CTL epitopes using a method based on QM, ANN and SVM, 
and found that the performance was further enhanced by 
devising consensus and combined approaches based on SVM and 
ANN.34 The combined prediction approach achieved a sensitivity 
of 79.4%, whereas the consensus approach obtained a sensitivity 
of 88.4%.34

Although many epitope prediction methods and approaches 
have been established and applied, epitope forecasting is not 
yet a complete and accurate reflection of the situation in vivo 
due to the complexity of the immune response mechanism. 
The bioinformatics-based prediction of immunogenic epitopes 
remains challenging. A higher degree of integration between 
these predictions and in vitro experiments should be considered 
to improve the accuracy of the predictions.

Epitope Vaccine Development

The development of vaccines based on the identification of 
immunogenic and protective HLA-restricted epitopes holds 
great promise for the treatment of cancer and the prevention and 
treatment of viral, bacterial, and parasitic diseases.

Epitope vaccines for the treatment of cancer
Due to the increasing incidence and mortality of cancer, the 

development of effective cancer vaccines against is important 
and urgent. Activated cytotoxic T lymphocytes (CTLs) can kill 
tumor cells directly or indirectly by secreting cytokines, such 
as IFN-γ and TNF-α. CTLs carry epitopes of tumor antigens 
associated with MHC-I molecules, and this association results in 
recognition of the MHC molecule and the bound tumor peptide. 
Thus, vaccines that contain CTL epitopes that recognize tumor 
antigens hold promise for the treatment of cancer.

Several peptides that bind to HLA molecules on tumor 
cells have been identified. A large number of tumor-associated 
antigens (TAAs) have been used for cancer vaccines35 (Table 1).

The TAA MUC1 is overexpressed on various hematological 
and epithelial malignancies, and is therefore a suitable candidate 
for broadly applicable vaccine therapies. Brossart et al. identified 
two novel peptides with a high binding probability to the HLA-
A2 molecule and showed that these peptides are shared among 
many tumors, including breast and pancreatic tumor cells and 
renal cell carcinoma cells.36 Karl et al. evaluated the efficacy 

of immunizing mice transgenic (Tg) for human MUC1 with 
peptides derived from the amino acid sequence of the CT of 
MUC1 (MUC1 CT

3–27
, MUC CT

18–49
, and MUC CT

37–69
).37 

Their data showed that survival can be significantly prolonged in 
vaccinated MUC1 Tg mice challenged with MUC1-expressing 
tumor cells without the induction of autoimmune responses.37

Carcinoembryonic antigen (CEA) is a TAA that can be 
overexpressed in individuals with various carcinomas.38 Li et 
al. identified the long peptide CEA

625–667,
 and found that mice 

immunized with a plasmid encoding the CEA peptide induced 
strong antigen-specific T-cell proliferation; in particular, 
immunization with the plasmid encoding triple-repeated CEA 
peptides significantly elevated the levels of IFN-γ secreted by T 
cells.39

HER-2/neu is a member of the epidermal growth factor receptor 
family and is normally expressed during fetal development and 
overexpressed in 30% of breast cancers.40,41 Fisk et al. identified 
an immunodominant peptide of the HER-2/neu proto-oncogene 
E75 (HER-2, 369–377: KIFGSLAFL) in ovarian tumor-specific 
CTL lines. The E75 was found to be efficient for the sensitization 
of T2 cells for lysis by all four CTL lines in an in-vitro assay.42

MAGE-A3 expresses both TCRs in human peripheral blood 
leukocytes (PBLs) and demonstrates antigen-specific reactivity 
against a range of melanoma and non-melanoma tumor cells. 
Chinnasamy et al. found that the TCR against MAGE-A3

112–120
 

has superior reactivity against tumor cells; thus, the MAGE-A3 
TCR may be an ideal candidate for tumor immunotherapy.43 
These researchers immunized transgenic mice that expressed the 
human HLA-A*0201 molecule with two HLA-A*0201-restricted 
peptides of MAGE-A3

112–120
 (KVAELVHFL) or MAGE-A3

271–279
 

(FLWGPRALV) to generate high-avidity TCRs against 
MAGE-A3.43

The immunogenic peptides from the MAGE-A3 epitope have 
received strong interest as a possible treatment for several types 
of cancer including melanoma,44 non-small cell lung carcinoma 
(NSCLC),45 head and neck squamous cell carcinoma,46 
hepatocellular carcinoma,47 and multiple myeloma.48 In addition, 
peptides derived from the T-1 protein,49–51 TRP-2 protein,52 and 
gp100 protein53 also have been considered candidates for cancer 
treatments.

A number of HLA-restricted epitope vaccines against 
cancer have entered clinical trials. Hu et al. reported the first 
clinical trial of a melanoma antigen gene-1 (MAGE-1)-derived 
peptide vaccines in 1996.54 These researchers immunized HLA-
A*01-positive patients, whose melanoma cells expressed the 
MAGE-1 peptide, with a MAGE-1 gene-encoded nonapeptide 
(EADPTGHSY) pulsed with autologous APC-based vaccine, 
and found that this vaccine induced an autologous melanoma-
reactive and peptide-specific cellular CTL response.54 Takahashi 
et al. reported the first clinical findings in one patient diagnosed 
with pulmonary metastasis of colon cancer who was treated 
with an artificially synthesized MAGE-A4-helper/killer-
hybrid epitope long peptide (H/K-HELP) cancer vaccine.55 
This hybrid peptide MAGE-A4-H/K-HELP was synthesized 
by conjugating MAGE-A4

278–299
 helper epitope (CD4+ T-cell 

epitope (ALAETSYVKV LEHVVRVNAR VR) with the 



©
 2

01
3 

La
nd

es
 B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com Human Vaccines & Immunotherapeutics 2569

Table 1. HLA-restricted epitope vaccines against cancer (continued)

Protein Epitope Adjuvant
Patients/
Animals

Methods Results Ref.

MUC1

CT3–27(CQCRRKNYGQ 
LDIFPARDTY HPMSeYPTYH)

(#1) CT18–49(HPMSeYPTYH 
THGRYVPPSS TDRSPYeKVS 

AG)(#2) CT37–69(STDRSPYeKV 
SAGNGGSSLS 

YTNPAVAAAS ANL)(#3)
MUC1 TR (PDTRPAPGST 

APPAHGVTSA)

GM-CSF

transgenic 
mice for 

human MUC1
(MUC1.Tg)

The mice was injected 
with a combination of 

50 μg of peptide#1, 
50 μg of peptide #2, and 
50 μg of peptide #3 in a 
total volume of 100 μl

survival can be significantly  
prolonged in vaccinated 

MUC1.Tg mice challenged 
with MUC1-expressing tumor 

cells, without induction of 
autoimmune responses

37

CeA CeA625–667

aluminum 
hydrox-
ide gel

Female 
BALB/c mice

Mice were immunized 
intramuscularly with 
100μg of pcDNA3.0, 

pcDNA-CeA625–667, or 
pcDNA-triCeA625–667 in 
1:1 (v/v) of 3% aluminum 

hydroxide gel, respectively

Induced strong antigen-
specific T cell proliferation.

Triple-repeated CeA peptides 
vaccine significantly elevated 

levels of IFN-γ secreted by T cells

39

MAGe
MAGe-A3112–120 (KVAeLVHFL)
MAGe-A3271–279 (FLwGPRALV)

HLA-A*0201 
transgenic 

mice

Mice were immunized at 
the base of the tail with

100 mg of MAGe-A3112–120 
(KVAeLVHFL) or 
MAGe-A3 271–279

(FLwGPRALV) plus 120 mg 
of hepatitis B virus core

generate high-avidity 
TCRs against MAGe-A3

43

MAGe-1 peptide 
(eADPTGHSY)

HLA-A1 
positive and 
melanoma 

cells expressed 
the MAGe-1 

peptide, 
(eADPTGHSY) 

patients

Four monthly intradermal 
injections of increasing 

numbers of peptide-
pulsed APCs (l05, 5 × l0,5 
106, and 107cells) for the 

four consecutive injections

Induced autologous melanoma-
reactive and peptide-specific 

cellular CTL response
54

MAGe-A4278–299 (ALAeTSYVKV 
LeHVVRVNAR VR)

MAGe-A4143–154 
(NYKRCFPVIF GK)

OK432
Montanide 

ISA-51

pulmonary 
metastatic 

colon cancer 
patients.

The patient was vac-
cinated with 1 or 10 mg 

MAGe-A4-H/K-HeLP mixed 
with OK432 (0.02Ke) and 
Montanide ISA-51 four 

times at 2-week intervals

Induced MAGe-A4-specific 
Th1 and T-cell 1 immune 

responses and the production 
of MAGe-A4-specific comple-
ment-fixing IgG antibodies. 

Significantly decreased Tumor 
growth and carcinoembry-
onic antigen tumor marker

55

gp100
gp100

(IMDQVPFSV, 
209–217(210 M))

Interleukin-2
Montanide 

ISA-51

Stage III, IV 
cutaneous 
melanoma, 

expression of 
HLA-A0201, 
an absence 

of brain 
metastases

Patients were treated 
with gp100 peptide plus 
Montanide ISA-51 once 
every 3 weeks, followed 
by interleukin-2 intrave-

nous bolus every 8 h

Compared with interleukin-2 
alone, vaccine plus interleu-
kin-2 significantly improved 
clinical response rate (16% 

vs. 6%) and progression-free 
survival (2.2 mo; 95% confi-
dence interval [CI], 1.7 to 3.9 
vs. 1.6 mo; 95% CI, 1.5 to 1.8)

53

HeR-2/
neu

Ae37
(Ac-LRMKGVGSPY 

VSRLLGICL-NH2, Ii-Key 
hybrid of HeR-2/neu 

peptide 776–790)

GM-CSF

Disease-free, 
node-negative 
breast cancer 

patients.

each person received 
100 μg, 500 μg or 1000 μg 

of Ae37 peptide mixed 
with 250 μg, 125 μg, 

30 μg or 0 μg GM-CSF 
inoculations for 6 mo.

The optimal biologic dose (OBD) 
of the novel Ae37 hybrid vaccine: 
500 μg of peptide with GM-CSF 

(30–125 μg) which signifi-
cantly increased in proliferative 

responses at long-term follow-up.

57
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Table 1. HLA-restricted epitope vaccines against cancer (continued)

Protein Epitope Adjuvant
Patients/
Animals

Methods Results Ref.

HeR-2/
neu

e75
(KIFGSLAFL, HeR-2/

neu; 369–377)
GM-CSF

Disease-free 
lymph node-
positive (NP), 
lymph node-
negative (NN) 

and HLA-A2/A3 
breast cancer 

patients

Patients were vaccinated 
over 6 mo (3, 4, or 6 times) 

with different doses of 
e75 (100 μg, 500 μg, or 
1000 μg) plus GM-CSF 

(250 μg or 125 μg)

Phase I The optimal biologic 
dose (OBD): 1000 μg e75 plus 
250 μg GM-CSF monthly × 6.

Phase II 24 mo landmark 
analysis disease free survival 

(DFS): Vaccinated group, 
94.3%; control group, 86.8%

59

HeR-2/
neu

GP2
(IISAVVGIL HeR-2/

neu, 654–662)
GM-CSF

Disease-free, 
lymph node-
negative and 

HLA-A2 breast 
cancer patients

Patients received 100 μg, 
500 μg, or 1000 μg of 

GP2 peptide mixed with 
250 μg of GM-CSF

elicit an significant 
immune response

61

MAGE-A4
143–154

 (NYKRCFPVIF GK) killer epitope though a 
glycine linker.. MAGE-A4-H/K-HELP induced MAGE-A4-
specific Th1 and Tc1 immune responses and the production of 
MAGE-A4-specific complement-fixing IgG antibodies.55 Tumor 
growth and the CEA tumor marker were significantly decreased 
in the final diagnosis.55

More excitingly, several clinical trials have evaluated 
immunogenic peptides from the HER2 protein (AE37 or E75 
or GP2).56 Holmes et al. conducted a Phase I trial to evaluate 
the AE37 peptide (Ac-LRMKGVGSPY VSRLLGICL-NH

2
, 

Ii-Key hybrid of HER-2/neu peptide 776–790: GVGSPYVSRL 
LGICL) vaccine with or without granulocyte macrophage colony 
stimulating factor (GM-CSF) in disease-free, node-negative 
breast cancer patients.57 This vaccine was found to be capable 
of eliciting HER-2/neu specific immune responses, even without 
the use of an adjuvant. Recently positive Phase II interim data 
on the AE37 cancer vaccine showed that disease-free survival 
in low-HER2-expressing patients was 89% in the treated group 
compared with 72% in the control group at a median follow-up 
period of 22 mo.58 The Phase IIb trial plans to enroll 300 women 
and will provide additional valuable information on the efficacy 
and safety of AE37.58 Mittendorf et al. conducted a Phase I/II 
clinical trial of the E75 peptide (KIFGSLAFL, HER-2/neu; 
369–377). These researchers vaccinated disease-free lymph 
node-positive (NP), lymph node-negative (NN), and HLA-A2/
A3 breast cancer patients, and the results suggested that the 
24-mo landmark analysis disease-free survival (DFS) was 94%.59 
Moreover, the E75 and GP2 peptide vaccines derived from the 
HER2 protein can be used as adjuvant therapy to prevent disease 
recurrence.59–61

Immatics Biotechnologies is a clinical-stage biopharmaceutical 
company developing TAA peptide-based cancer vaccines that 
help to activate the body’s self-defense mechanisms (www.
immatics.com). Their most advanced product for the treatment 
of kidney cancer, IMA901, started a Phase III clinical trial in 
2012.9,10 Their second product for the treatment of colorectal 
cancer, IMA910, has completed a Phase II clinical trial. Their 
third product, IMA950 targeting brain cancer, recently entered 
Phase I clinical studies.62

Effective peptide vaccines against infectious disease agents
There is much experimental data demonstrating that epitope 

vaccines could be a new strategy for the development of effective 
vaccines for the prevention of some infectious diseases caused by 
viruses, bacteria, and parasites (Table 2).

Epitope vaccines against virus-infected cells
Recent years have seen advances in the study of HLA-

restricted epitope vaccines against viral diseases. In the last few 
years, a wealth of HIV-related information has become available. 
Kloverpris et al. induced novel CD8+ T-cell responses during 
chronic untreated HIV-1 infection though immunization with 
107 monocyte-derived dendritic cells (MDDCs) subcutaneously 
pulsed with seven CD8+ T-cell epitopes and three CD4+ T-cell 
epitopes, and the immunization induced T-cell responses 
specific to one or more epitopes in all 12 individuals.63 Jin et 
al. conducted a Phase I trial of a novel polypeptide vaccine of 
HIV T-helper epitopes (EP-1043) and a DNA vaccine of HIV 
CTL epitopes.64 These researchers found that 68% (32/47) of 
the subjects had a positive CD4+ T response after receiving the 
polypeptide vaccines, and the responding CD4+ T cells exhibited 
a diverse poly-functional cytokine profile.64

An epitope-based vaccine against influenza virus might 
overcome the limitation of strain-specific restriction of the 
available vaccines. Tan et al. immunized HLA-transgenic 
mice expressing HLA class I A*0201, A*2402, and B*0702 and 
HLA class II DRB1*0301, and DRB1*0401 with 196 peptides 
from influenza H1N1, H3N2, H1N2, and H5N1 and avian 
influenza A strains.65 These researchers found that 17 highly 
conserved H1N1 T-cell epitopes of the influenza virus PB1, 
PB2, and M1 proteins can induce a protective effect against 
live influenza virus challenge and may reduce the incidence of 
variant amino acids of the corresponding T-cell epitopes used 
in future influenza vaccines.65 Ichihashi et al. subcutaneously 
vaccinated HLA-A24 transgenic mice with the three most 
immunogenic and highly conserved epitopes among three 
different influenza A virus subtypes (H1N1, H3N2, and 
H5N1), and the results showed that more than half of the mice 
survived a lethal influenza virus challenge during both effector 
and memory CTL phases.66
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Table 2. examples of HLA-restricted epitope vaccines in preventing infectious disease (continued)

Pathogen Epitopes Adjuvant Patients/Animals Immunization Results Ref.

HIV

Gag433 (FLGKIwPS), Gag150 
(T2L, RLLNAwVKV), Vif23 
(I9V, SLVKHHMYV), env67 
(V2I, NIwATHACV), Vif101 
(M9L, GLADQLIHL), Vpu66 

(A9V, ALVeMGHHV) and 
Pol606 (T9V, KLGKAGYVV)

18–50 y males, 
HLA-A*0201+, HIV-1 
seropositivity for 1 y 
or more, no clinical 

AIDS, never received 
antiretroviral therapy, 

and not received 
any other vaccine or 
immune-modulating 
medicine within 3 mo 

Patients received 1 × 
107 monocyte-derived 
dendritic cells MDDCs 

subcutaneously (weeks 
0, 2, 4 and 8), pulsed 

with seven CD8+ T-cell 
epitopes and three 

CD4+ T-cell epitopes

T-cell responses 
specific for one or more 
epitopes were induced 

in all 12 individuals

63

eP1043
eP1090

Healthy adults

Patients received 
eP-1043 only (50 μg or 
200 μg), DNA vaccine 
eP1090 only (4 mg), 
eP1043 plus eP1090 
(200 μg + 4 mg in 4 
single injections at 

0, 1, 3 and 6 mo

Sixty-eight percent 
(32/47) of subjects 

had a positive CD4+ 
T response after 
two vaccinations

64

Influenza virus

196 influenza H1N1 
peptides that contained 

residues of highly conserved 
proteome sequences of 
the human H1N1, H3N2, 
H1N2, H5N1, and avian 

influenza A strainss

TiterMax® 
Gold

HLA-A2(A*0201),
A24(A*2402), B7 

(B*0702), DR2 
(DRB1*1501), DR3 
(DRB1*0301), and 
DR4 (DRB1*0401) 
transgenic mice

 Mice were injected 
subcutaneously 

at the base of tail 
with 100 µl of the 

immunization peptide 
pool in TiterMax® 

Gold adjuvant (1:1).

The most favorable 
sequences for a T 

cell epitope-based 
vaccine are the 17 

H1N1 T cell epitopes 
of the PB1, PB2, and 
M1 proteins and can 

induce protective 
effect against live 

influenza challenge

65

PA130–138,
PB1430–438

PB2549–557

 CpG-ODN HLA-A24 transgenic 
(A24Tg) mice

Mice were immunized 
with a mixture of 

peptide-liposome con-
jugates and CpG-ODN or 
poly(I:C) (10 µg/mouse) 
and re-immunized one 

and two weeks later

More than half of 
the mice survived 

lethal influenza virus 
challenge during 
both effector and 

memory CTL phases

66

HBV
HBx(52–60), HBx(92–
100), HBx(115–123), 

HBx(140–148)

HLA-A*0201
transgenic (HLA-
A2.1/Kb Tg) mice

C57BL/6nu/nu mice

HLA-A2.1/Kb Tg mice 
received VLP- or 

epitope-pulsed DCs.
C57BL/6nu/nu mice 

which were inoculated 
subcutaneously

with 5 × 106 SNU-398 
tumor cells received 
1 × 108 stimulated 

splenocytes derived 
from immunized HLA-

A2.1/Kb Tg mice

Induce high 
immunogenicity 
and significant 

antitumor effects

69

HPV
HPV-16 e712–20 (MLDLQPeTT)

HPV-16 e786–93 (TLGIVZPI)

HLA-A2 positive women 
with high-grade cervical 
or vulvar intraepithelial 

neoplasia who were 
positive for HPV 16

Patients received 50 mg 
of the HPV-16 e7 peptide 

in aqueous solution 
injected intradermally 
in a volume of 100 ml

12 of 18 patients 
cleared the virus from 

cervical scrapings 
by the fourth 

vaccine injection.

70

Some virus infections, i.e., with hepatitis B virus (HBV) 
and human papilloma virus (HPV), may eventually lead to the 
development of virus-induced tumors.67,68 A virus-epitope-based 
vaccine may be used as a treatment for patients with cancer. Xiang 
et al. reported the formation of multi-epitope peptide-loaded 

virus-like particles (VLPs), which are composed of the HBV X 
protein (HBx)-derived epitopes HBx

52–60
, HBx

92–100
, and HBx

115–123
,  

a novel subdominant CTL epitope HBx
140–148,

 and the universal 
T helper epitope pan human leukocyte antigen DR-binding 
epitope (PADRE).69 These researchers immunized HLA-A*0201 
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Tg mice with VLP-pulsed dendritic cells, and found significantly 
high immunogenicity and antitumor effects.69 Muderspach et al. 
conducted a Phase I trial to evaluate the peptide vaccines HPV16 
E7

12–20
 and E7

86–93
.70 These researchers immunized 18 HLA-A2-

positive women with high-grade cervical or vulvar intraepithelial 
neoplasia who were positive for HPV16. The virological assays 
using cervical scraping showed that 12 of the 18 patients had 
cleared the virus by the fourth vaccine injection.70

A placebo-controlled randomized Phase II study was recently 
conducted in patients with HPV16-positive high-grade cervical 
squamous intraepithelial lesion (HSIL). Development of this 
type of treatment relies on the ability to motivate patients and in 
the reduction of the side effects.71

A multi-epitope chimeric DNA vaccine that expresses 
25 glycoprotein epitopes from SEOV, HTNV and PUUV 
(designated as SHP chimeric gene) from hantavirus was 
constructed by Zhao et al.72 The vaccination of BALB/c mice 
with the SHP multi-epitope chimeric DNA vaccine led to a 
marked dramatic augmentation of the humoral and cellular 
responses.72

Epitope vaccines against bacteria and parasites
Unlike many viral proteins, bacterial proteins are mainly 

exposed to B-cells and CD4+ T-cells. However, bacterial type 
III secretion system (T3SS) effectors also have access to the 
host cytosol and may provoke CTL responses. Thus, we can 
assume that this group of proteins undergoes selection against 
the presentation of CTL epitopes, as observed in viral proteins.73 
Kono et al. used type-1 polarized DCs loaded with Listeriolysin 
O (LLO) 91–99, the H2-Kd-restricted epitope of Listeriolysin 
monocytogenes, and injected intravenously into BALB/c mice.74 
The results demonstrated that the vaccine strongly enhanced the 
LLO 91–99-specific CD8+ T-cells exhibiting epitope-specific 
cytotoxic activity and IFN-γ production.74

CD8+ T lymphocytes play a major role in protection against 
parasites, particularly intercellular protozoa such as Trypanosoma 
cruzi, Plasmodium, and Toxoplasma, through the secretion of 
IFN-γ, which activates macrophages to inhibit replication, kill 
the parasite, and induce lysis of infected cells. Thus, a CD8+ T-cell 
epitope-based vaccine should contribute to the development 
of an effective vaccine against intercellular parasites. Cong et 

Table 2. examples of HLA-restricted epitope vaccines in preventing infectious disease (continued)

Pathogen Epitopes Adjuvant Patients/Animals Immunization Results Ref.

Listeriolysin 
monocytogenes

listeriolysin O (LLO) 91–99 
peptide, GYKDGNeYI.

H2-Kd-restricted
DCs BALB/c mice

2 × 105 LLO 91–99 
peptide-pulsed DCs, 

intravenously.
Two injections with 

a 1 week interval 
between them.

Strongly enhanced 
LLO 91–99-specific 

CD8+ T cells exhibiting 
epitope-specific 

cytotoxic activity and 
IFN-γ production.

Significantly 
improved protective 
immunity against L. 

monocytogenes

74

Trypanosoma 
cruzi

Ibosomal P2 protein (TcP2β).
HLA-A*0201-restricted

HLA-A2.1 transgenic 
mice (HHD mice

pcDNA3-TcP2β or 
pcDNA3 alone (100 μg) 
injected into the tibialis 

anterior muscles
Immunized 3 times 

at 15 d intervals.

Reduced parasitemia 
after challenge with 
a lethal T. cruzi dose.

77

Plasmodium 
falciparum

HLA-A2-restricted
MAP-1,MAP-2 and MAP-3 

multiple peptide.

Montanide 
ISA 51

C57BL/6 mice 
expressing the human 

HLA-A2 transgene
BALB/c, A/J and 

outbred CD1 mice

 20 μg of tetraepitope 
MAP in 100 μl PBS 

emulsified in 100 μl 
Montanide ISA 51 or 

PBS plus Montanide ISA 
51 alone immunized 

groups of six mice each 
by three subcutaneous 

injections delivered 
at 4-week intervals.

 All three MAPs could 
induce both antibody 
and cellular responses.
MAP-2 vaccines could 
reduce the growth of 
blood stage parasites 

in erythrocyte cultures 
to various degrees.

78

Toxoplasma 
gondii

HLA-A02-restricted peptides
HLA-A03-restricted peptides
HLA-B07-restricted peptides

PARDe
GLA-Se

Pam2Cys

HLA-A*0201 Kb trans-
genic mice HLA-A*1101 

transgenic mice
HLA-B*0702 trans-

genic mice

50 μg of each pep-
tide was adminis-
tered per mouse 

with PARDe,GLA-Se, 
orPam2Cys.

Mice were boosted 
once or twice in 2 

week interval

Induced splenocytes 
to produce IFN-γ.

Protected mice 
against challenge 

with high numbers 
of Type II parasites

75,
76,
82
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al. evaluated protection against Toxoplasma gondii infection by 
T. gondii-specific HLA-A02, and -A03 restricted peptides.75 
These researchers immunized HLA-A*0201 and HLA-A*1101 
transgenic mice with a number of CD8+ T-cell epitopes 
(SAG2C

38–46
, SAG2D

180–189
, SAG2X

44–52
, SAG2X

351–359
, SAG3

136–

144
, SAG3

375–383
, SPA

12–20
, SPA

82–90
, MIC1

9–17
, MICA2P

11–19
, 

SAG1
224–232

, GRA6
164–172

, and GRA7
134–142

), with PADRE and 
GLA-SE. The vaccine induced high levels of IFN-γ production 
and protected mice against challenge from type II parasites.75,76 
Garcia et al. characterized the T cell epitopes of the T. cruzi 
ribosomal P2 protein (TcP2β) that were recognized by HLA-
A*0201-restricted CTLs in HLA-transgenic mice and humans,77 
and found that TcP2-P7 and TSA-1

514
 peptide immunizations 

significantly reduced T. cruzi post-infection parasitemia.77

However, complex intracellular parasites, such as Plasmodium 
and T. gondii, present a plurality of antigenic epitopes. Thus, 
immunization with a compound polyvalent vaccine that 
stimulates immunity to a broad array of antigens is likely to be 
more effective than a single antigen. Therefore, a combination of 
epitopes from different stages is an optimal strategy to overcome 
the antigen complexity of the parasite. Mahajan et al. reported 
on three P. falciparum multiple antigen peptide (MAP) vaccines 
encoding several CD8+ and CD4+ T-cell epitopes and some B-cell 
epitopes. The antibody and cellular responses were determined in 
three inbred (C57BL/6, BALB/c, and A/J) strains, one congenic 
(HLA-A2 on the C57BL/6 background) strain, and one outbred 
strain (CD1) of mice.78 All three MAP constructs were able to 
induce both antibody and cellular responses; furthermore, the 
MAP-2 vaccines reduced growth of blood-stage parasites in 
erythrocyte cultures to various degrees.78

Conclusions about epitope-based infectious disease vaccines
Promising progress has been made in the development of 

epitope-based vaccines against infectious diseases. However to 
date, very few of these are used in the clinic primarily due to. 
the low immunogenicity induced by the limited epitopes in the 
vaccine construction, relative to the immunogenicity of vaccines 
made by other approaches. It is therefore necessary to improve 
the immunogenicity of epitope vaccines.

How Can the Immunogenicity of 
Epitope Vaccines Be Improved?

A variety of strategies have been used to improve the 
immunogenicity of epitope-based vaccines. These include the 
construction of epitope vaccines with additional CD8+ T-cell 
epitopes accompanied by CD4+ T-cell epitopes and B-cell 
epitopes to induce a more complete immune response against 
the pathogen, the identification of more effective adjuvants or 
delivery system, the use of immunogenic carrier proteins, and the 
use of multiple proteins as the epitope sources.

CD4+ T-cell epitopes help CD8+ T-cell epitopes
Both cellular and humoral responses target a large number 

of antigens and epitopes of complex pathogens. HLA class II 
molecules are expressed by human professional APCs and display 
peptides derived from exogenous antigens to CD4+ T-cells79 and 
HLA class II peptide ligands that are recognized by T-cells. These 

epitopes trigger the immune response.80 Grover et al. identified 
a T. gondii-specific CD4+ T-cell epitope, AS15 AVEIHRPVPG 
TAPPS, through a CD4 T-cell hybridoma and found that 
immunization of mice with the corresponding peptides provided 
significant protection against subsequent parasite challenge and 
resulted in a lower parasite burden in the brain.81

Previous studies have illustrated a role for CD4+ responses in 
the development of CD8+ CTL responses, both in humans and in 
experimental animals. Vigorous CD4+ responses are important 
for developing a CTL response. We found that immunization 
of transgenic HLA-B*0702 mice with the CD8+ T-cell epitope 
GRA720–728 (LPQFATAAT) alone did not stimulate T cells 
to produce IFN-γ. The addition of PADRE (a synthetic non-
natural pan HLA- DR binding epitope peptide) stimulated 
CD8+ T cells to secrete IFN-γ, indicating that PADRE is a 
universal effective CD4+ T-cell epitope that contributes to 
the peptide vaccine construct.82 Oseroff et al. tested lipidated 
covalently linked HTL-CTL epitope constructs and showed 
that these are highly immunogenic for the induction of HBV- 
and HCV- specific CTL responses.83

Compared with the universal CD4+ T-cell epitope, 
specific epitopes may be more useful for the improvement of 
immunogenicity. Hughes et al. used a West Nile virus (WNV) 
CD4+ T-cell epitope to improve the immunogenicity of a dengue 
virus serotype 2 vaccine.84 According to their data, 90% of mice 
were protected from lethal WNV challenge by dengue serotype 2, 
and 100% protection was achieved by dengue virus serotype 4.84  
The protection was temporally associated with a rapid influx 
of activated CD4+ T cells.84 The CD4+ T cells from WNV-
immunized mice could be stimulated by epitopes in the envelope 
protein transmembrane domain.84 The incorporation of potent 
WNV epitopes into dengue virus serotype 2 DNA and VLP 
vaccines could significantly improve their immunogenicity.84 
The abovementioned studies demonstrated that both CD4+ 
and CD8+ epitopes should be included in an epitope vaccine 
constructs.

B-cell epitopes are necessary for the construction of an 
epitopes vaccine

B-cells play a required role in humoral immunity through 
the production of antibodies. Zhou et al. vaccinated specified-
pathogen-free (SPF) piglets intramuscularly with two B-cell 
linear epitopes from the E2 glycoprotein of classical swine fever 
virus (CSFV): rE2-a

844–865
 and rE2-b

693–716.
 These researchers 

found that all of the rE2-ba-immunized pigs survived and 
exhibited no symptoms or signs of CSF after challenge 
infection.85

B-cells also can act work as APCs and are critical cellular 
adjuvants that facilitate optimal CD4+ T-cell activation and 
mediate other multiple roles in immune function.86 Thus, it is 
necessary to include B-cell epitopes in HLA-restricted epitope 
vaccines. Wang et al. used multiple linear epitopes (B-cell, CTL, 
and Th epitopes) of Japanese encephalitis virus (JEV) expressed 
in recombinant MVA to obtain a multiple-epitope vaccine 
and found that this vaccine can induce adequate humoral and 
cellular immune responses as well as protection in challenged 
mice.87
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Covalent or genetic linkage to a carrier protein with 
abundant helper epitopes

The fusion of the peptide antigen to a carrier protein is another 
approach that is often used to increase the immunogenicity of 
peptide vaccines. These carriers are foreign proteins that are 
likely to contain CD4+ T-cell epitopes and can improve the 
CTL response that is induced by CD8+ T-cell epitopes.88 Many 
commonly used carrier proteins, such as calreticulin and invariant 
chain, also are likely to impact the subcellular localization of the 
antigen and hence may act via this mechanism.88 For example, 
many vaccines have been explored to treat chronic HPV16 
infections, and most of these vaccines consist of the fusion of E7 
with a ‘carrier-protein’ that increases vaccine potency.89 Kang et 
al. used a functionally linked Th1-polarizing chemokine (IFN-
γ-inducible protein-10, IP-10) as a carrier-protein and found that 
it could enhance the HPV16 E7 DNA vaccine potency.90

Adjuvants and delivery systems play an important role in 
enhancing the immune response

Although peptide vaccines that contain CD4+ and CD8+ 
T-cell epitopes can prime CMI responses, low-molecular-
weight synthetic peptide antigens are not highly immunogenic 
by themselves. These observations have led to investigations 
on co-administration of adjuvants with vaccine antigens to 
potentiate the weak immunogenicity of the synthetic epitopes.91

Adjuvanting antigens contribute to the success of vaccination. 
For example, 3-deacylated monophosphoryl lipid A (MPL), 
which is a detoxified derivative of the lipopolysaccharide from 
Salmonella minnesota R595, is a Toll-like receptor (TLR)-4 
agonist and thus a potent activator of Th1 responses. It has been 
used as an adjuvant in licensed vaccines and in clinical trials for 
several infectious disease and cancer vaccines.92 Other adjuvants 
in approved human vaccines include Alum, MF59™ (an oil-in-
water emulsion), immunopotentiating reconstituted influenza 
virosomes (IRIV), and cholera toxin.93 A novel AS03 (a tocopherol 
oil-in-water emulsion-based adjuvant system)-adjuvanted vaccine 
was used in humans during the 2009 influenza A/H1N1 
pandemic, and was shown to be highly immunogenic in adults 
with a clinically acceptable safety profile.94

Vaccine adjuvants can be divided into two classes: 
immunostimulants and vehicles. Immunostimulants include 
cytokines, bacterial toxins, glycolipids, and TLR ligands (LPS, 
MPL QS21, and CpG DNA) and are used as adjuvants to enhance 
the immune responses.95 Zonneveld-Huijssoon et al. treated rats 
with a heat shock protein 60 epitope (p1) and TLR9 ligand CpG 
and found that the nasal co-administration of p1/CpG amplified 
p1-specific T-cell proliferation and significantly augmented the 
arthritis-protective effect of p1.96

Particulate antigen delivery systems, e.g., lipid particles, 
nanoparticles, and microparticles, can act as vehicles that help 
present antigens to the immune system in a more optimal 
manner.2,95 For example, poly (D,L-lactic-co-glycolic acid) 
nanoparticles (PLGA-NPs) in a cancer vaccine delivery system 
containing antigens and immunostimulatory molecules not only 
can actively target the antigens to DCs but also can provide 
immune activation and rescue impaired DCs from tumor induced 
immuosupression.97 Partidos et al. injected CBA (H-2k) mice 

intraperitoneally with the CTL epitope (T-NP6: LDRLVRLIG) 
from measles virus nucleoprotein encapsulated in PLGA (50:50) 
microparticles and elicited a higher T-cell response compared with 
results obtained with emulsion in incomplete Freund’s adjuvant.98

Use of multiple proteins as sources of epitopes
The use of vaccines that include a mixture of multiple peptides 

derived from multiple proteins may have advantages compared 
with the single-protein vaccines. Multiple-epitope vaccines 
could increase the CTL induction,99 and avoid the potential for 
antigenic escape which has been observed when all of the epitopes 
are derived from a single protein.

Recently, vaccines based on multiple peptides derived from 
multiple proteins have received increasing attentions. Suzuki et 
al. conducted Phase I trials in patients with advanced/recurrent 
NSCLC using a mixture of four peptides vaccines derived from 
four novel cancer antigens to evaluate their clinical response.100 
Vaccination achieved a median survival time of 398 d and a 1-y 
survival rate of 58%, while a cytotoxic chemotherapeutic drug 
only achieved a median survival time of about ~8 mo and a 1-y 
survival rate of ~30%.100

Conclusion

The study of HLA-restricted epitope vaccines has produced 
significant achievements and is receiving increasing attention. 
Many HLA-restricted epitope vaccines have exhibited potential 
benefits against pathogens, and some epitope vaccines have been 
evaluated clinically. However, we still face several key challenges in 
the development of epitope-based vaccines: (1) the immunogenicity 
of the epitope is weak by itself, and some natural epitopes are weakly 
bound to HLA molecules and are may cause immune tolerance; (2) 
the accuracy of epitope prediction methods is inconsistent; and (3) 
the diversity of HLA molecules in the human population limits the 
application of epitope-based vaccines. It is therefore important to 
(1) find and modify some epitopes to achieve higher affinity with 
the HLA molecules that are expressed by most of the population; 
(2) improve the methods of epitope identification, particularly 
the accuracy of the prediction methods; (3) construct epitope 
vaccines using additional CD8+ T-cell epitopes, as well as CD4+ 
T- and B-cell epitopes, in order to induce a more complete immune 
response against the pathogen;101 (4) find more effective adjuvants 
or delivery systems to improve immunogenicity of epitope vaccine; 
(5) use immunogenic carrier proteins, and (6) use multiple proteins 
as epitope sources. We hypothesize that epitope vaccines are a 
promising vaccine approach and that, with further developments 
in bioinformatics, molecular biology and immunology, HLA-
restricted epitope vaccines will make important breakthroughs and 
become effective vaccines to protect humans from various diseases.
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